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Abstract 

The productivity of (human) information processing as an economic 
activity is a question raising some interest. Using Marschak’s evalua-
tion framework, Radner and Stiglitz have shown that under certain 
conditions the production function of this activity has increasing mar-
ginal returns in the beginning. This paper shows that under slightly 
different conditions this information processing function has repeated 
convexities with ongoing processing activity. Even for smooth changes 
in the signals’ likelihoods, the function is only piecewise smooth with 
indifferentiable convexities at conditional changes of action. For lin-
ear likelihood functions the processing value shows to be piecewise 
linear with convexities at these levels. 
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Abstract 

The productivity of (human) information processing as an economic 
activity is a question raising some interest. Using Marschak’s evalua-
tion framework, Radner and Stiglitz have shown that under certain 
conditions the production function of this activity has increasing mar-
ginal returns in the beginning. This paper shows that under slightly 
different conditions this information processing function has repeated 
convexities with ongoing processing activity. Even for smooth changes 
in the signals’ likelihoods, the function is only piecewise smooth with 
indifferentiable convexities at conditional changes of action. For lin-
ear likelihood functions the processing value shows to be piecewise 
linear with convexities at these levels. 

1 Introduction 

In today’s economics, the fact that information is a major factor of produc-
tion and of increasing importance as a source of competitive advantage is a 
generally accepted truism. It is only possible to evaluate information eco-
nomically when a specific usage for the information is assumed. This usage 
is typically a certain decision problem, in which the information might 
change the decision makers’ subjective prior probabilities for the environ-
mental states. Furthermore, the evaluation has to be possible from a prior 
perspective before actually knowing the signal in order to be useful when 
deciding about acquiring and processing the information. The standard 
framework for this evaluation is briefly stated in section 2. 

The analysis of the productivity of information as a factor of production and 
of information processing as an economic activity leads to a number of re-
markable results. Just recalling a few, investments in information are often 
irreversible, what sometimes makes trading information difficult (Arrow 
1974). Additionally, information does not disappear when used, so it can be 
used more than once, although its value might change while using it. Fur-
thermore, information can be used for different tasks at the same time. These 
features demonstrate the fact that there are increasing marginal returns to 
information due to multiple usage. 

Besides these considerations, Radner and Stiglitz (1984) have shown that 
under certain conditions there are increasing marginal returns to little infor-
mation even if it is only used for one specific decision problem. As will be 
seen later, beginning information processing is not the only case for con-
vexities when using information only once, i.e. in a single decision problem:  
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For slightly different conditions than those of Radner and Stiglitz, the activ-
ity of information acquisition and processing has repeated convexities even 
when continued. 

2 Discussion of the Relevant Literature 

 2.1   Marschak’s Value of Information and Blackwell’s Condition 
on the informativeness of information structures 

The standard in economic valuation of information is Marschak’s model 
(Marschak 1954, 1959). It evaluates information with the gain a decision 
maker can extract from it in a specific decision problem due to a change in 
his subjective probabilities for the environmental states. For reasons of sim-
plicity, we restrict ourselves to a risk neutral decision maker, a finite number 
of environmental states Ss and alternative courses of actions Aa to choose 
from. When deciding about acquiring costly information like a market re-
port, the decision maker has to value the information on a prior basis, i.e. 
without knowing its content (what the market report actually says). This is 
achieved by distinguishing between the information I (the report) and the 
signals Ii, representing alternative versions of its content which the decision 
maker believes to be possible (e.g. growing, stagnating or shrinking revenue 
for a very simple market report). 

The prior value of the information I=(I1,…,II) before knowing the actual 
signal Ii is the expected additional payoff the decision maker can get from 
the decision due to possessing the information, i.e. knowing the signal. To 
calculate this payoff, he has to judge the likelihoods p(Ii|Ss) for the signals 
conditional on the possible states and work out the conditional probabilities 
p(Ss|Ii) using Bayes’ well known equation. The resulting value of informa-
tion equals the difference in expected payoff for the decision maker with and 
without the information (see (1)). The Markov matrix (p(Ii|Ss))is of likeli-
hoods is called information structure. If Uas is the payoff of action Aa in state 
Ss in decision problem D and a* indexes the action with maximal expected 
payoff without the information, the value of information is like usually de-
fined as 
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When evaluating information processing, the natural question arises how to 
compare two given information structures (matrices P and Q of likelihoods) 
with respect to their informativeness. In general, we know there is no way to 
measure the quantity of information as a real number, and of two given in-
formation structures neither one might be more informative. Still it is a well 
known result due to Blackwell (1951), that for any two given information 
structures P and Q the statement “P is more informative than Q” is equiva-
lent to the existence of a matrix M such that  

The relation “more informative than” means that for any utility function and 
decision problem the value of information in P is at least equal to the value 
of information in Q.1 

It seems natural to restrict using the term information processing to activities 
which lead to information structures becoming increasingly more informa-
tive. In other words, a matrix valued information structure function  

that maps real valued activity levels on information structures is only said to 
model information processing when for t ≥ r, Pt is more informative than Pr, 
that is when for each r and t with r ≤ t there exists an Mrt with 

                                                 
1  Blackwell (1951). Clearly, if such an M exists, Q can never be more informative, 

since Q can be constructed from P any time when knowing M. More surprising is 
the necessity for the existence of such an M. Notice that P and Q do not have to have 
the same number of signals since M is not restricted to have the same number of 
columns and rows. A more fundamental analysis of information structures is 
McGuire (1972). 
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2.2   The Radner / Stiglitz Result on the Nonconcavity of Starting 
Information Processing 

When interpreting processing of information as an economic activity that 
may add value in a decision problem, a natural question about the in-
put/output-relationship of this activity arises, i.e. about its production func-
tion. Here, the independent variable is the activity level of processing infor-
mation, while the dependent variable is the value of the information proc-
essed. The decision problem D, the decision maker’s preferences (here: risk 
neutral payoff maximizer), and a specific strategy for processing informa-
tion have to be clear in order to make sense. With information processing 
strategy, we mean a plan or procedure about which “piece of information” is 
processed at which activity level. This production function with a real val-
ued activity level t will be called information processing function.2 

Radner and Stiglitz (1984) have shown a substantial and very interesting 
result for information processing functions with real valued arguments (ac-
tivity levels) when processing information is costly: Under certain condi-
tions that will be discussed below, the net marginal value of costly informa-
tion processing is negative near the origin of zero activity, i.e. in a 
neighborhood of the origin. Radner and Stiglitz conclude that there have to 
be increasing marginal returns to information processing over some range of 
the parameter as soon as there is some amount of information processing 
with a positive net value.  

Arrow (1985) has put this result into brief words: Given the Radner/Stiglitz 
conditions, “a little information is never worth the cost”. Since already 
Arrow (1985) has directed attention towards the fact that the result strongly 
depends on its assumptions by giving examples that neither fulfill the con-
ditions nor the result, it seems worthwhile to take a closer look at the four 
main assumptions from which Radner and Stiglitz were able to derive their 
strong result.3  

                                                 
2  A formalization is given in (5). 
3  The assumptions not discussed are in only important to ensure that the 

Radner/Stiglitz-formalisms actually models costly information processing in a 
reasonable way. 

( )( ) ( )( ) )4(pp
sisirtrsisit SIMSI =×
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Firstly, Radner and Stiglitz assume an infinite number of actions that can be 
indexed with a multidimensional, real valued parameter. An example for a 
decision problem with such an action set is the mixture of a securities port-
folio. For k securities, the courses of action are the possible mixtures, a set 
that can be conveniently indexed with numbers from [0;1]k that add up to 
one – a (k-1)-dimensional subset of [0;1]k. 

They secondly assume payoff to be a continuous function in the parametri-
zation of the actions, thus introducing a neighborhood structure between 
courses of action that apart from the parameters also applies to the payoff. 
Once a decision problem has an infinite number of alternative actions in-
dexed by real valued parameters, it is natural to assume continuity: If any 
functional dependency between payoff and parametrization of alternative 
actions was allowed, one could hardly make statements about payoff shifts 
with changing probabilities and consequently about value of information, 
since slight changes in the optimal solution could easily imply a completely 
different payoff. 

The third assumption is made on the informativeness of the information 
structure (pt(Ii|Ss))is at t=0, i.e. before actually starting to process informa-
tion: At t=0, the information structure is assumed to be completely nonin-
formative for all signals Ii, noninformative meaning that the likelihoods 
p0(Ii|Ss) at t=0 are independent from s for all signals Ii. Like intended in the 
term, completely noninformative information structures bear no information 
that when knowing the signal could change the states’ probabilities p(Ss) or 
change the choice. Especially, the value of noninformative information 
structures (before costs) is always zero. So assuming noninformativeness 
means that information processing actually starts without information that is 
not already contained in the probabilities p(Ss). 

Accordingly, the fourth assumption rules out information processing proce-
dures with sudden jumps or discontinuities in informativeness at the critical 
start: Radner and Stiglitz assume the information structure function   
IFP : t→(pt(Ii|Ss))is  to be differentiable in t=0. Consequently, there are no 
“sudden insights” of jumps in informativeness. Instead, information proc-
essing is assumed to happen smoothly. Both the third and fourth assumption 
seem to be a natural condition for deriving the convexity result, since for 
information processing procedures deviating from these assumptions, gen-
eral results seem hard to obtain. This does, however, not mean that real 
world information processing might not in many cases proceed with sudden, 
non differentiable insights. 
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3 A Model for the Valuation of Information Processing 

To model the production function of information processing, we map a real 
valued parameter representing the information processing activity to its 
value, i.e. to the information structure that is connected with that activity. As 
a restriction, we only allow information structures becoming successively 
more informative, i.e. we restrict processing to information structure func-
tions IFP : t → (pt(Ii|Ss))is  like in equation (3) that fulfill (4). Additionally, 
IFP is assumed to be continuous in every component, i.e. the likelihood 
functions IFP;is : t → pt(Ii|Ss)  are all continuous. 

So like in Radner and Stiglitz (1984) with a slightly different interpretation, 
the information processing activity is real valued. Diverging from their ap-
proach we shall restrict ourselves to decision problems with a finite number 
of alternative courses of action Aa, environmental states Ss, information sig-
nals Ii, and a risk neutral decision maker. If information processing starts 
with zero information (completely noninformative information structure), 
the likelihood p0(Ii|Ss) for all signals Ii is independent of the state Ss. Unlike 
in the Radner / Stiglitz model, this is however not required.  

The signals represent possible outcomes of information processing from a 
prior perspective. With growing information processing activity t, the infor-
mation structures attached become more informative, meaning the stochastic 
indication of the signals towards the states gets increasingly stronger. Even-
tually but not necessarily, the point of complete information is reached, 
where the conditional probability pt(Ss|Ii) for all states and signals is either 1 
or 0. Differing from evaluating processing of information in one single step, 
the information here is processed continuously. The signals Ii represent prior 
possibilities for processing results. It should be noted that for reasons of 
simplicity, the set of possible signals does not depend on the processing 
activity t. 

It must also be kept in mind that the value of the information structures is al-
ways calculated from the prior perspective, implying that a decision about 
an optimal information processing activity derived from the model uses only 
the information given before processing starts: the decision whether to stop 
or to proceed with information processing here is not adaptive in the sense 
that it uses the signals being processed along the way. This is important 
since an adaptive strategy might lead to better results when feasible: with the 
constantly changing base of the decision maker’s information while proc-
essing, the relevant adaptive information processing function for the re-
maining processing activity changes steadily. 



7 

 

Since the value of a given information structure (likelihood matrix) 
(q(Ii|Ss))is is calculated according to (1), and (3) gives the continuous se-
quence of information structures satisfying (4), the information processing 
function IPF can be defined according to  

IPF is the “production function” for the information processing activity, 
mapping each processing activity t on the prior value of its associated infor-
mation structure before cost. The information structure function Pt models 
information processing, i.e. by assumption condition (4) is fulfilled for all 
r≤t. Hence, it is immediately clear from Blackwell’s result that IPFD;P is 
monotonously non decreasing in t.  

For every processing activity t and signal Ii, the action with the maximal 
expected payoff U will be marked with the index a*i,t. In the case of zero in-
formation at t=0, clearly a* = a*i,0 is the optimal action independently of 
signal Ii without additional information processing. Starting from (1) and (5) 
using this notation, we obtain 

Discussion: A closer look at the last term shows an important feature of the 
information processing function. If for a given signal Ii and activity level t* 
there is a single action with maximal expected payoff, implying that no two 
or more alternative courses of action have the same expected payoff at (t*,i), 
then there will be a neighborhood of t* for which this action stays optimal 
for Ii, because IFP was assumed to be continuous in every component 
pt(Ii|Ss).  
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Case 1: If this neighborhood can at t* be found for every signal Ii, 
then there will also be a neighborhood near t* in which the actions 
being optimal for the respective signals Ii stay the same. In that case, 
the payoff difference in the last term of (6) is constant within that 
neighborhood, i.e. it does not depend on t. Since also the prior state 
probabilities p(Ss) do not depend on t, the information processing 
function within that neighborhood is a linear mixture of the likelihood 
functions’ components pt(Ii|Ss).  

Case 2: If there is a signal Ii for which in t* at least two actions yield 
the same expected payoff, then for this signal the optimal action 
changes at t*. For these t* a change of the optimal course of action 
happens conditionally on a signal Ii. 

In section 4, specific functions IFP will be analyzed for their associated in-
formation processing functions IPFD; P. 

4 Results: The Shape of Information Processing Func-
tions 

It is clear that even if all likelihoods pt(Ss|Ii) differentiably depend on t, the 
same cannot be said for the information processing function. Formally, this is 
caused by the maximum function in the value of information. 

Result 1:  If information processing is monotonously non decreasing and 
smooth in the sense that all likelihoods differentiably depend on t, 
then the information processing function is continuous every-
where and piecewise differentiable with isolated activity levels 
where it can usually not be differentiated. These t correspond to 
processing activity levels for which there is a change in the opti-
mal action for certain signals Ii (“conditional change of action”). 
At these indifferentiable levels the function is convex even for 
concave likelihoods, i.e. the marginal return on its right are larger 
than those on its left. 

The continuity results directly from the continuity of all likelihood 
functions pt(Ii|Ss). In case 1 of the brief discussion following (6), if all 
pt(Ii|Ss) are differentiable in such a t*, the same is true for IPFD;P at 
this particular t* and within its neighborhood where the optimal action 
does not change for any signal Ii. In case 2 of that discussion, there is 
a conditional change in the optimal action for at least one signal Ii at 
t*. At these t*, the payoff optimal action and thus the payoff differ-
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ence in (6) changes for at least one signal. The information processing 
function usually cannot be differentiated in such t*, but clearly is still 
continuous. 

The growth in slope follows looking at the last term in (6): If the 
function cannot be differentiated at t* as described, then for at least 
one signal Ii there are two courses of action yielding the same ex-
pected payoff at t*, and for t>t* a different action becomes condi-
tionally optimal under Ii in expected payoff. If the decision maker 
wouldn’t change his course of action for t>t* under this Ii, his infor-
mation processing function IPFD;P would suboptimally stay at the pre-
vious non decreasing path (see (6)). Changing to the conditionally su-
perior action for t>t* at Ii changes the “mixing factors” for the likeli-
hood functions pt(Ii|Ss) of IPFD;P.4 

With the model described in section 3, it is easy to see that starting at t=0 
with completely noninformative information and a single best course of ac-
tion Aa*, a result similar to Radner and Stiglitz applies: At the start, infor-
mation processing is completely worthless, since the alternative courses of 
action have to compensate continuously in t for their disadvantage in ex-
pected payoff. 

Result 2:  In the model described in section 3, zero information at t=0, and a 
single best action Aa*, i.e. an unique action with maximal ex-
pected payoff, information processing is completely worthless at 
the beginning: In this case, there exists an t*>0 such that for all 
t≤t* :    IPFD; P(t) = 0. 

This result follows directly from (6) and the reasoning at the end of 
the previous section (case 1). If there is zero information at t=0, then 
the p0(Ii|Ss) are independent of the states Ss, hence p0(Ss|Ii)=p(Ss) for 
all signals Ii. If there is an unique action with maximal expected pay-
off, the payoff of the other possible courses of action have to over-
come a difference in expected payoff before they can be optimal for 
certain signals Ii. Since it is assumed that all pt(Ii|Ss) change con-
tinuously with t, the same is true for pt(Ss|Ii). Hence under each signal, 
Aa* stays optimal for small enough changes of t. Thus taking the 
minimal one of these small enough changes for all signals, we have 

                                                 
4  Schauenberg (1986) has demonstrated this result for the special case of two 

environmental states. 
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found a t* up to which IPFD;P stays at zero and the processing is of no 
value (see (6),(1)).  

Example 1 

A risk neutral decision maker faces a decision problem with six possible 
courses of action and two environmental states with attached prior prob-
abilities and information structures arising during processing (see table 1). 

Table 1: Decision Problem D and Information Structure Function Pt
5 

D S1 S2       

p(Ss) 0,5 0,5 EU  Pt    

A1  220.00 -255.00   -17.50  pt(Ii|Ss) I1 I2 p(Ss) 

A2  150.00    25.00    87.50  S1 ½+½t0.3 ½-½t0.3 0,5 

A3  100.00  100.00  100.00  S2 ½-½t0.3 ½+½t0.3 0,5 

A4    63.33  130.00    96.67  pt(Ii) 0,5 0,5  

A5     -6.67  160.00    76.67      

A6 -366.67  200.00   -83.33      

Figure 1 shows the information processing function and its derivative for 
this case of differentiable information processing and zero information at 
activity level t=0.6 Clearly, the value of perfect information and thus an up-
per bound for the function is 110. In this special case, pt(Ii) is independent 
from t, since p(S1)=p(S2). 

                                                 
5  In interpreting ta as learning pace, it helps to know that in asymptotic statistics the 

quality of statistical results usually improves with a speed of √n on average (a=0.5), 
where n is the discrete number of independent trials, see Rüschendorf (1988). 

6  For visual reasons the derivative is multiplied with a constant factor. 
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Figure 1: Information Processing Function for the decision problem and 
the information structure function in tables 1 and 2 

It seems reasonable to look at information processing functions of simple 
likelihood functions pt(Ii|Ss) and hence IFP. The simplest interesting case is a 
constant change in all likelihoods pt(Ii|Ss), i.e. the case of linear likelihood 
functions in each component: We will call information processing linear and 
the associated learning having a constant pace when for all states Ss and all 
signals Ii there are real parameters ais and bis such that 

If the absolute value of the ais is comparatively high for all signals and 
states, the likelihoods change relatively fast with t and learning has a high 
pace and vice versa. It is natural to formalize the pace of learning at t as sum 
of the likelihood’s differentials at t in absolute values: 

With this definition, linear information processing as defined in (7) has con-
stant learning pace at all t. 

Result 3:  For linear information processing, the information processing 
function is piecewise linear between the activity levels where it 
cannot be differentiated. At these levels, its slope grows. 
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The piecewise linearity between the conditional changes of action 
(result 1) follows directly from (6) and the considerations thereafter, 
together with all likelihood functions being linear (see (7)). The 
convexity at the activity levels where IPFD;P cannot be differentiated is 
a special case of result 1. 

Example 2 

In the decision problem discussed in example 1 (see table 1), the risk neutral 
decision maker now faces an information processing opportunity as de-
scribed in table 2. The information processing function in this case of linear 
information processing is shown in figure 2. At t=0 there is again zero in-
formation. 

Table 2: Information Structure Function for Linear Information 
Processing 

pt(Ii|Ss) I1 I2 p(Ss) 
S1 ½+½t ½-½t 0,5 

S2 ½-½t ½+½t 0,5 

pt(Ii) 0,5 0,5  

Figure 2: Information Processing Function for the Decision Problem D 
(table 1) and Linear Information Processing (IF in table 2) 
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5  Summary and Outlook 

It has been shown that increasing marginal returns to information processing 
even for single usage are not restricted to the start of the processing activity, 
but do also apply repeatedly through its course. The value of processing 
information is a locally linear combination of the associated likelihood 
functions with the payoff of the respective optimal actions serving as 
weighting factors. Especially, if all likelihood functions are linear, informa-
tion processing yields piecewise linear expected payoffs with increasing 
slope at the activity levels with conditional change in optimal action for 
certain signals. 

There are many consequences of the convexities in information processing 
functions. Firstly, for finding the optimal (prior) degree of information proc-
essing, the standard marginality criterion for optimality does not apply. 
Seemingly innocent statements like March (1994, p.25), that “rational deci-
sion makers can be expected to invest in information up to the point at which 
expected cost equals the marginal expected return” prove to be wrong in 
this generality, since the productivity of information processing systemati-
cally has increasing marginal returns: Even if marginal returns and (con-
stant) marginal costs equal each other, it might well be useful to continue 
processing if such a convexity overcompensating a marginal loss is close. In 
order to make this argument, one does not have to rely on repeated use of 
information. 

Secondly, there are major implications for issues of coordination, control 
and optimal size of the firm. Just to name two important ones, already 
Arrow (1975) discussed the positive implications for vertical integration due 
to uncertainty reduction. Similarly, Radner (1992) discusses whether possi-
ble disadvantages of size that manifest in over proportional growth in co-
ordination cost can be more than compensated by increasing marginal re-
turns of information. 

A third area where important implications can certainly be expected is the 
organization of knowledge intense industries and the creation of competitive 
advantage in these. After analyzing situations and implications of increasing 
marginal returns, Arthur (1996) provided a management level overview of 
such considerations. These and other important implications are largely 
subject to further research and will not be further discussed here. 
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