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ABSTRACT. The productivity of (human) information processing as an eco-
nomic activity is a question that is raising some interest. Using Marschak’s eval-
uation framework, Radner and Stiglitz have shown that, under certain conditions,
the production function of this activity has increasing marginal returns in its initial
stage. This paper shows that, under slightly different conditions, this information
processing function has repeated convexities with ongoing processing activity.
Even for smooth changes in the signals’ likelihoods, the function is only piecewise
smooth with non-differentiable convexities at points of conditional changes of
action. For linear likelihood functions the processing value proves to be piecewise
linear with convexities at these levels.
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1. INTRODUCTION

In today’s economics, the fact that information is a major factor of
production and of increasing importance as a source of competit-
ive advantage is a generally accepted truism. It is only possible to
evaluate information economically when a specific usage for the
information is assumed. This usage typically applies to a certain
decision problem, in which the information might change the de-
cision makers’ subjective prior probabilities for given environmental
states. Furthermore, the evaluation has to be possible from a prior
perspective – that is, before actually knowing the signal – in or-
der to be useful when deciding about acquiring and processing the
information. The standard framework for this evaluation is briefly
stated in Section 2.

The analysis of the productivity of information as a factor of pro-
duction and of information processing as an economic activity leads
to a number of remarkable results. Just to recall a few, investments
in information are often irreversible, which sometimes makes trad-
ing information difficult (Arrow 1974). Additionally, information
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does not disappear when used, so it can be used more than once,
although its value might change while using it. Furthermore, inform-
ation can be used for different tasks at the same time. These features
demonstrate the fact that there are increasing marginal returns to
information as a result of its multiple usage.

Besides these considerations, Radner and Stiglitz (1984) have
shown that under certain conditions there are increasing marginal
returns to a small amount of information even if it is only used
for one specific decision problem. As will be seen later, initial in-
formation processing is not the only case for convexities when using
information only once, i.e., in a single decision problem. For slightly
different conditions than those of Radner and Stiglitz, the activity
of information acquisition and processing has repeated convexities
even when continued.

2. DISCUSSION OF THE RELEVANT LITERATURE

2.1. Marschak’s value of information and Blackwell’s condition
for the informativeness of information structures

The standard in economic valuation of information is Marschak’s
model (Marschak 1954, 1959). It evaluates information with the
gain a decision maker can extract from it in a specific decision
problem due to a change in his subjective probabilities for given
environmental states. For simplicity, we restrict ourselves to a risk-
neutral decision maker, a finite number of environmental states Ss

and alternative courses of actions Aa to choose from. When deciding
about acquiring costly information like a market report, the decision
maker has to value the information on a prior basis, i.e., without
knowing its content (what the market report actually says). This is
achieved by distinguishing between the information I (the report)
and the signals Ii , representing alternative versions of its content
which the decision maker believes to be possible (e.g., growing,
stagnating or shrinking revenue for a very simple market report).

The prior value of the information I = (I1, . . . , II ) before know-
ing the actual signal Ii is the expected additional payoff the decision
maker can get from the decision due to possessing the informa-
tion, i.e., knowing the signal. To calculate this payoff, he has to
judge the likelihoods p(Ii |Ss) for the signals conditional on the pos-
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sible states and work out the conditional probabilities p(Ss |Ii) using
Bayes’ well-known equation. The resulting value of information
equals the difference in expected payoff for the decision maker with
and without the information (see (1)). The Markov matrix (p(Ii |Ss))is
of likelihoods is called information structure. If Uas is the payoff
of action Aa in state Ss in decision problem D and a∗ indexes the
action with maximal expected payoff without the information, then
the value of information is usually defined as:

IVD((p(Ii |Ss))is) :=
I∑

i=1

p(Ii) ×
[

max
a=1,... ,A

{
S∑

s=1

p(Ss |Ii) × Uas

}

−
S∑

s=1

p(Ss |Ii) × Ua∗s

]

=
[

I∑
i=1

p(Ii) × max
a=1,... ,A

{
S∑

s=1

p(Ss |Ii) × Uas

}]

−
[

I∑
i=1

(
S∑

s=1

p(Ii) × p(Ss |Ii) × Ua∗s

)]

=
[

I∑
i=1

p(Ii) × max
a=1,... ,A

{
S∑

s=1

p(Ss |Ii) × Uas

}]

−
[

S∑
s=1

(
I∑

i=1

p(Ss |Ii) × p(Ii)

)
× Ua∗s

]

=
[

I∑
i=1

p(Ii) × max
a=1,... ,A

{
S∑

s=1

p(Ss |Ii) × Uas

}]

−
[

S∑
s=1

p(Ss) × Ua∗s

]
(1)

When evaluating information processing, the natural question arises
as to how to compare two given information structures (matrices P

and Q of likelihoods) with respect to their informativeness. In gen-
eral, we know there is no way to measure the quantity of information
as a real number, and, of two given information structures, neither
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one might be more informative. Still, it is a well-known result at-
tributable to Blackwell (1951), that for any two given information
structures P and Q the statement ‘P is more informative than Q’ is
equivalent to the existence of a matrix M such that

P × M = Q (2)

‘More informative than’ means that for any utility function and de-
cision problem the value of information in P is at least equal to the
value of information in Q.1

It seems natural to restrict the term information processing to
activities that lead to information structures becoming increasingly
more informative. In other words, a matrix valued information struc-
ture function

IFP : t → (pt (Ii |Ss))is =: Pt (3)

that maps real-valued activity levels on information structures is
only said to model information processing when for t ≥ r , Pt is
more informative than Pr , that is, when for each r and t with r ≤ t ,
there exists an Mrt with

(pt (Ii |Ss))is × Mrt = (pr(Ii |Ss))is (4)

2.2. The Radner-Stiglitz result: The nonconcavity of initial
information processing

When interpreting processing of information as an economic activ-
ity that may add value in a decision problem, a natural question
about the input/output-relationship of this activity arises, i.e., about
its production function. Here, the independent variable is the activ-
ity level of processing information, while the dependent variable is
the value of the information processed. The decision problem D,
the decision maker’s preferences (here: risk-neutral payoff maxim-
izer), and a specific strategy for processing information have to be
clear in order to make sense. By information processing strategy, we
mean a plan or procedure about which a ‘piece of information’ is
processed at a certain activity level. This production function with
a real-valued activity level t will be called information processing
function.2
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Radner and Stiglitz (1984) have shown a substantial and very
interesting result for information processing functions with real-
valued arguments (activity levels) when processing information is
costly: under certain conditions that will be discussed below, the net
marginal value of costly information processing is negative near the
origin of zero activity, i.e., in a neighborhood of the origin. Radner
and Stiglitz conclude that there have to be increasing marginal re-
turns to information processing over some range of the parameter
as soon as there is some amount of information processing with a
positive net value.

Arrow (1985) has put this result succintly: given the Radner–
Stiglitz conditions, ‘a little information is never worth the cost’.
Since Arrow (1985) drew attention to the fact that the result strongly
depends on its assumptions, by giving examples that neither fulfill
the conditions nor the result, it seems worthwhile to take a closer
look at the four main assumptions from which Radner and Stiglitz
were able to derive their strong result.3

First, Radner and Stiglitz assume an infinite number of actions
that can be indexed with a multidimensional, real-valued parameter.
An example of a decision problem with such an action set is the
mixture of a securities portfolio. For k securities, the courses of ac-
tion are the possible mixtures, a set that can be conveniently indexed
with numbers from [0;1]k that add up to one — a (k–1)-dimensional
subset of [0;1]k.

They next assume payoff to be a continuous function in the para-
meterization of the actions, thus introducing a neighboring structure
among courses of action that, apart from the parameters, also applies
to the payoff. Once a decision problem has an infinite number of
alternative actions indexed by real-valued parameters, it is natural
to assume continuity: if any functional dependency between payoff
and parameterization of alternative actions were allowed, one could
hardly make statements about payoff shifts with changing probabil-
ities and, consequently, about the value of information, since slight
changes in the optimal solution could easily imply a completely
different payoff.

The third assumption is made on the informativeness of the in-
formation structure (pt (Ii |Ss))is at t = 0, i.e., before actually start-
ing to process information: at t=0, the information structure is as-
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sumed to be completely non-informative for all signals Ii , non-
informative meaning that the likelihoods p0(Ii |Ss) at t = 0 are
independent from s for all signals Ii . As indicated by the term,
completely non-informative information structures bear no inform-
ation that could change the states’ probabilities p(Ss) when know-
ing the signal. Especially important, the value of non-informative
information structures (before costs) is always zero. Assuming non-
informativeness means information processing actually starts with-
out information that is not already contained in the probabilities
p(Ss).

Accordingly, the fourth assumption rules out information pro-
cessing procedures with sudden jumps or discontinuities in inform-
ativeness at the critical start: Radner and Stiglitz assume the inform-
ation structure function IFP : t → (pt (Ii |Ss))is to be differentiable
in t = 0. Consequently, there are no ‘sudden insights’ or jumps
in informativeness. Instead, information processing is assumed to
happen smoothly. Both the third and fourth assumption seem to
be a natural condition for deriving the convexity result, since for
information processing procedures deviating from these assump-
tions, general results seem hard to obtain. This does not, however,
mean that real-world information processing might not proceed with
sudden, non-differentiable insights in many cases.

3. A MODEL FOR THE VALUATION OF INFORMATION
PROCESSING

To model the production function of information processing, we
map a real-valued parameter representing the information processing
activity to its value, i.e., to the value of the information structure
that is connected with that activity. As a restriction, we only allow
information structures that are successively more informative, i.e.,
we restrict processing to information structure functions IFP : t →
(pt (Ii |Ss))is as in Equation (3) that fulfill Equation (4). Addition-
ally, IFP is assumed to be continuous in every component, i.e., the
likelihood functions

IFP ;is : t → pt (Ii |Ss)

are all continuous.
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So as in Radner and Stiglitz (1984) with a slightly different in-
terpretation, the information processing activity is real-valued. Di-
verging from their approach we shall restrict ourselves to decision
problems with a finite number of alternative courses of action Aa ,
environmental states Ss , information signals Ii , and a risk-neutral
decision maker. If information processing starts with zero informa-
tion (completely non-informative information structure), the likeli-
hood p0(Ii |Ss) for all signals Ii is independent of the state Ss . Unlike
in the Radner-Stiglitz model, however, this is not required.

The signals represent possible outcomes of information process-
ing from a prior perspective. With growing information processing
activity t, the information structures attached become more inform-
ative, meaning the stochastic indication of the signals toward the
states gets increasingly stronger. Eventually but not necessarily, the
point of complete information is reached, where the conditional
probability pt (Ss |Ii) for all states and signals is either 1 or 0. Differ-
ing from evaluating processing of information in one single step, the
information here is processed continuously. The signals Ii represent
prior possibilities for processing results. It should be noted that for
the sake of simplicity, the set of possible signals does not depend on
the processing activity t .

It must also be kept in mind that the value of the information
structures is always calculated from the prior perspective, imply-
ing that a decision about an optimal information processing activity
derived from the model uses only the information given before pro-
cessing starts: the decision about whether to stop or to proceed with
information processing here is not adaptive in the sense that it uses
the signals being processed along the way. This is important since an
adaptive strategy might lead to better results when feasible: with the
constantly changing base of the decision maker’s information while
processing, the relevant adaptive information processing function
for the remaining processing activity changes steadily.

Since the value of a given information structure (likelihood mat-
rix) (q(Ii |Ss))is is calculated according to (1), and (3) gives the
continuous sequence of information structures satisfying (4), the
information processing function IPF can be defined according to

IPFD;P (t) = IVD(IVP (t)) (5)
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IPF is the ‘production function’ for the information processing
activity, mapping each processing activity t on the prior value of
its associated information structure before cost. The information
structure function Pt models information processing, i.e., by as-
sumption condition (4) is fulfilled for all r ≤ t . Hence, it is imme-
diately clear from Blackwell’s result that IPFD;P is monotonously
non-decreasing in t .

For every processing activity t and signal Ii , the action with the
maximal expected payoff U will be marked with the index a∗

i,t . In
the case of zero information at t = 0, clearly a∗ = a∗

i,0 is the op-
timal action independent of signal Ii without additional information
processing. Starting from (1) and (5) using this notation, we obtain

IPFD;P =
I∑

i=1

pt (Ii ) ×
[

max
a=1,... ,A

{
S∑

s=1

pt (Ss |Ii) × Uas

}

−
S∑

s=1

pt (Ss |Ii) × Ua∗s

]

=
I∑

i=1

pt (Ii ) ×
[

S∑
s=1

pt (Ss |Ii) ×
(
Ua∗

i;t s − Ua∗s
)]

=
[

I∑
i=1

S∑
s=1

pt (Ii) × pt (Ii |Ss) × p(Ss)

pt (Ii)
×
(
Ua∗

i;t s − Ua∗s
)]

=
I∑

s=1

S∑
s=1

p(Ss) ×
(
Ua∗

i;t s − Ua∗s
)

× pt (Ii |Ss) (6)

DISCUSSION A closer look at the last term shows an important
feature of the information processing function. If for a given signal
Ii and activity level t∗ there is a single action with maximal expec-
ted payoff, which implies that no two or more alternative courses
of action have the same expected payoff at (t∗, i), then there will
be a neighborhood of t∗ for which this action stays optimal for
Ii , because IFP was assumed to be continuous in every component
pt (Ii |Ss).

Case 1. If this neighborhood can be found at t∗ for every signal Ii ,
then there will also be a neighborhood near t∗ in which the actions
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that are optimal for the respective signals Ii stay the same. In that
case, the payoff difference in the last term of (6) is constant within
that neighborhood, i.e., it does not depend on t . Since the prior
state probabilities p(Ss) also do not depend on t , the information
processing function within that neighborhood is a linear mixture of
the likelihood functions’ components pt (Ii |Ss).

Case 2. If there is a signal Ii for which in t∗ at least two actions yield
the same expected payoff, then for this signal the optimal action
changes at t∗. For these t∗ a change of the optimal course of action
happens conditionally on a signal Ii .

In Section 4, specific functions IFP will be analyzed for their asso-
ciated information processing functions IPFD;P .

4. RESULTS: THE SHAPE OF INFORMATION PROCESSING
FUNCTIONS

It is clear that even if all likelihoods pt (Ss |Ii) are differentiable in
t , the same cannot be said for the information processing function.
Formally, this is caused by the maximum function in the value of
information.

RESULT 1. If information processing is smooth in the sense that all
likelihoods are differentiable everywhere in t , then the information
processing function is both continuous and non-decreasing every-
where and is piecewise differentiable with isolated activity levels
where it can usually not be differentiated. These t correspond to
processing activity levels for which there is a change in the op-
timal action for certain signals Ii (‘conditional change of action’).
At these non-differentiable levels the function is convex even for
concave likelihoods, i.e., the marginal return on its right are larger
than those on its left.

The continuity results directly from the continuity of all likelihood
functions pt (Ii |Ss). In case 1 of the brief discussion following (6),
if all pt (Ii |Ss) are differentiable in such a t∗, the same is true for
IPFD;P at this particular t∗ and within its neighborhood where the
optimal action does not change for any signal Ii . In case 2 of that
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discussion, there is a conditional change in the optimal action for at
least one signal Ii at t∗. At these t∗, the payoff optimal action and
thus the payoff difference in (6) changes for at least one signal. The
information processing function usually cannot be differentiated in
such t∗, but is clearly still continuous.

The growth in slope follows by looking at the last term in (6): If
the function cannot be differentiated at t∗ as described, then for at
least one signal Ii there are two courses of action yielding the same
expected payoff at t∗, and for t > t∗ a different action becomes
conditionally optimal under Ii in expected payoff. If the decision
maker wouldn’t change his course of action for t > t∗ under this
Ii , his information processing function IPFD;P would sub-optimally
stay at the previous non-decreasing path (see (6)). Changing to the
conditionally superior action for t > t∗ at Ii changes the ‘mixing
factors’ for the likelihood functions pt (Ii |Ss) of IPFD;P .4

With the model described in Section 3, it is easy to see that
starting at t = 0 with completely non-informative information and
a single best course of action Aa∗ , a result similar to Radner and
Stiglitz applies: at the start, information processing is completely
worthless, since the alternative courses of action have to compensate
continuously in t for their disadvantage in expected payoff.

RESULT 2. In the model described in Section 3, zero information at
t = 0, and a single best action Aa∗ , i.e., a unique action with max-
imal expected payoff, information processing is completely worth-
less at the beginning: In this case, there exists an t∗ > 0 such that
for all t ≤ t∗: IPFD;P (t) = 0.

This result follows directly from (6) and the reasoning at the end of
the previous section (case 1). If there is zero information at t = 0,
then the p0(Ii |Ss) are independent of the states Ss , hence p0(Ss |Ii) =
p(Ss) for all signals Ii . If there is a unique action with maximal
expected payoff, the payoff of the other possible courses of action
have to overcome a difference in expected payoff before they can be
optimal for certain signals Ii . Since it is assumed that all pt (Ii |Ss)
change continuously with t, the same is true for pt (Ss |Ii ). Hence
under each signal, Aa∗ stays optimal for sufficiently small changes
of t . Thus taking the minimal one of these sufficiently small changes
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TABLE I

Decision problem D and information structure
function Pt

5.

D S1 S2
p(Ss) 0,5 0,5 EU

A1 220.00 −255.00 −17.50
A2 150.00 25.00 87.50
A3 100.00 100.00 100.00
A4 63.33 130.00 96.67
A5 −6.67 160.00 76.67
A6 −366.67 200.00 −83.33

Pt

pt (Ii |Ss) I1 2 p(Ss)

S1
1
2 + 1

2 t0.3 1
2 − 1

2 t0.3 0,5

S2
1
2 − 1

2 t0.3 1
2 + 1

2 t0.3 0,5
pt (Ii ) 0,5 0,5

for all signals, we have found a t∗ up to which IPFD;P stays at zero
and the processing is of no value (see (6), (1)).

EXAMPLE 1. A risk-neutral decision maker faces a decision prob-
lem with six possible courses of action and two environmental states
with attached prior probabilities and information structures arising
during processing (see Table I).

Figure 1 shows the information processing function and its deriv-
ative for this case of differentiable information processing and zero
information at activity level t = 0.6 Clearly, the value of perfect
information and thus an upper bound for the function is 110. In this
special case, pt (Ii) is independent from t, since p(S1) = p(S2).

It seems reasonable to look at information processing functions
of simple likelihood functions pt (Ii |Ss) and, hence, IFP . The
simplest interesting case is a constant change in all likelihoods
pt (Ii |Ss), i.e., the case of linear likelihood functions in each com-
ponent: we will call information processing linear and the associated
learning having a constant pace when for all states Ss and all signals
Ii there are real parameters ais and bis such that

pt (Ii |Ss) = ais × t + bis (7)
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Figure 1. Information processing function for the decision problem and the
information structure function in Tables 1 and 2.

If the absolute value of ais is comparatively high for all signals
and states, the likelihoods change relatively quickly with t and learn-
ing has a high pace and vice versa. It is natural to formulate the pace
of learning at t as the sum of the likelihoods’ differentials at t in
absolute values:

LPp(I ; t) =
I∑

i=1

S∑
s=1

∣∣∣∣∂pt (Ii |Ss)

∂t

∣∣∣∣ (8)

With this definition, linear information processing as defined in (7)
has a constant learning pace at all t .

RESULT 3. For linear information processing, the information pro-
cessing function is piecewise linear between the activity levels
where it cannot be differentiated. At these levels, its slope grows.

The piecewise linearity in the intervals between the conditional
changes of action (Result 1) follows directly from (6) and the con-
siderations thereafter, together with the linearity of all likelihood
functions (see (7)). The convexity at the activity levels where IPFD;P
cannot be differentiated is a special case of Result 1.

EXAMPLE 2. In the decision problem discussed in Example 1 (see
Table I), the risk-neutral decision maker now faces an information
processing opportunity as described in Table II. The information
processing function in this case of linear information processing is
shown in Figure 2. At t = 0 there is again zero information.
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TABLE II

Information structure function for linear
information processing.

pt (Ii |Ss) I1 I2 p(Ss)

S1
1
2 + 1

2 t 1
2 − 1

2 t 0.5
S2

1
2 − 1

2 t 1
2 + 1

2 t 0.5
pt (Ii ) 0.5 0.5

Figure 2. Information processing function for the decision problem D (Table I)
and linear information processing (IF in Table II)

5. SUMMARY AND OUTLOOK

It has been shown that increasing marginal returns to information
processing, even for single usage, are not restricted to the start of
processing activities, but do also apply repeatedly through their
course. The value of processing information is a locally linear com-
bination of the associated likelihood functions with the payoff of the
respective optimal actions serving as weighting factors. If all like-
lihood functions are linear, information processing yields piecewise
linear expected payoffs with increasing slope at the activity levels
with conditional change in optimal action for certain signals.

There are many consequences of convexities in information pro-
cessing functions. First, for finding the optimal (prior) degree of
information processing, the standard marginality criterion for op-
timality does not apply. Seemingly innocent, general statements like
March’s (1994, p. 25), that ‘rational decision makers can be ex-
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pected to invest in information up to the point at which expected
cost equals the marginal expected return’ prove to be wrong, since
the productivity of information processing has systematically in-
creasing marginal returns: even if marginal returns and (constant)
marginal costs equal each other, it might well be useful to continue
processing if such a convexity to overcompensate a marginal loss is
close at hand. In order to make this argument, one does not have to
rely on repeated use of information.

Secondly, there are major implications for issues of coordination,
control and optimal size of the firm. Let us name two important
ones. Arrow (1975) discussed the positive implications for vertical
integration due to uncertainty reduction. Similarly, Radner (1992)
discussed whether possible disadvantages of size that manifest in
upwardly disproportionate growth in coordination costs can be more
than compensated by increasing marginal returns of information.

A third area where important implications can certainly be expec-
ted is the organization of knowledge-intense industries and the cre-
ation of competitive advantage in these. After analyzing situations
and implications of increasing marginal returns, Arthur (1996)
provides a management-level overview of such considerations.
These and other important implications are largely subject to further
research and will not be discussed here.

NOTES

1. Blackwell (1951). Clearly, if such an M exists, Q can never be more inform-
ative, since Q can be constructed from P any time when knowing M . More
surprising is the necessity for the existence of such an M . Notice that P and
Q do not have to have the same number of signals since M is not restricted to
having the same number of columns and rows. A more fundamental analysis
of information structures appears in McGuire (1972).

2. A formal model is given in (5).
3. The assumptions not discussed are in only important to ensure that the Radner–

Stiglitz formal model actually models costly information processing in a reas-
onable way.

4. Schauenberg (1986) has demonstrated this result in the special case of two
environmental states.

5. In interpreting 1
2 ·ta as the pace of learning, it helps to know that in asymptotic

statistics, the quality of statistical results usually improves with a speed of
√

n

on average (a = 0.5), where n is the discrete number of independent trials.
See Rüschendorf (1988).
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6. For visual reasons the derivative is multiplied by a constant factor.
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